We are driving our story forward.

Latest updates from PepGen

Recent publication honoured by the OTS

A recent publication utilising the precursor technology that underpins PepGen’s platform has been awarded ‘Paper of the Month‘ by the Board of Directors and the Scientific Advisory Council of the Oligonucleotide Therapeutics Society (OTS). In addition, this publication is currently under consideration for the…

PepGen attends BioTrinity in London

PepGen attended the BioTrinity conference from the 29th of April to the 1st of May 2019. The company was represented by Damian Marron (Chairman of the Board), Dr Caroline Godfrey (CEO) and Dr Sonia Bracegirdle (CBO) at this event. Alongside meetings with potential investors and partners,…

PepGen’s £1.6M grant from Innovate UK has commenced

On the 1st of February 2019, PepGen’s £1.6M Innovate UK grant officially commenced. The company will initially focus on platform validation studies in small and large in vivo models, with project management and intellectual property workpackages running parallel to this experimental work.

Relevant publications

Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice

Klein et. al., The Journal of Clinical Investigation (2019), online publication ahead of print version

Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nuclear-retained mutant transcripts containing CUG expansions (CUGexp). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell–penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment of Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces high efficacy and long-lasting correction of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide-conjugates for systemic corrective therapy in DM1.

Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment

Gait et. al., Nucleic Acid Therapeutics (2018), 29(1), 1

The review starts with a historical perspective of the achievements of the Gait group in synthesis of oligonucleotides (ONs) and their peptide conjugates toward the award of the 2017 Oligonucleotide Therapeutic Society Lifetime Achievement Award. This acts as a prelude to the rewarding collaborative studies in the Gait and Wood research groups aimed toward the enhanced delivery of charge neutral ON drugs and the development of a series of Arg-rich cell-penetrating peptides called Pip (peptide nucleic acid/phosphorodiamidate morpholino oligonucleotide [PNA/PMO] internalization peptides) as conjugates of such ONs. In this review we concentrate on these developments toward the treatment of the neuromuscular diseases Duchenne muscular dystrophy and spinal muscular atrophy toward a platform technology for the enhancement of cellular and in vivo delivery suitable for widespread use as neuromuscular and neurodegenerative ON drugs.

How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

Godfrey et. al., Human Molecular Genetics (2015), 24(15), 4225

Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model.

Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment

Betts et. al., Molecular Therapy–Nucleic Acids (2012, 1(8), e38

Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semi-functional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We have previously reported impressive heart activity including high-splicing efficiency and dystrophin restoration following a single administration of an arginine-rich cell-penetrating peptide (CPPs) conjugated to a phosphorodiamidate morpholino oligonucleotide (PMO): Pip5e-PMO. However, the mechanisms underlying this activity are poorly understood. Here, we report studies involving single dose administration (12.5 mg/kg) of derivatives of Pip5e-PMO, consecutively assigned as Pip6-PMOs. These peptide-PMOs comprise alterations to the central hydrophobic core of the Pip5e peptide and illustrate that certain changes to the peptide sequence improves its activity; however, partial deletions within the hydrophobic core abolish its efficiency. Our data indicate that the hydrophobic core of the Pip sequences is critical for PMO delivery to the heart and that specific modifications to this region can enhance activity further. The results have implications for therapeutic PMO development for DMD.

Targeting RNA to treat neuromuscular disease

Muntoni and Woods, Nature Reviews Drug Discovery (2011), 10, 612

The development of effective therapies for neuromuscular disorders such as Duchenne muscular dystrophy (DMD) is hampered by considerable challenges: skeletal muscle is the most abundant tissue in the body, and many neuromuscular disorders are multisystemic conditions. However, despite these barriers there has recently been substantial progress in the search for novel treatments. In particular, the use of antisense oligonucleotides, which are designed to target RNA and modulate pre-mRNA splicing to restore functional protein isoforms or directly inhibit the toxic effects of pathogenic RNAs, offers great promise and these approaches are now being tested in the clinic. Here, we review recent advances in the development of such antisense oligonucleotides and other promising novel approaches, including the induction of readthrough nonsense mutations.